结合更新机制的电力系统暂态稳定评估研究
作者:
作者单位:

(1.三峡大学电气与新能源学院,湖北 宜昌 443002;2.新能源微电网湖北省协同创新中心,湖北 宜昌 443002;3.国网湖北省电力公司武汉供电公司,湖北 武汉 430013;4.国网山西省电力公司太原供电公司,山西 太原 030000)

通讯作者:

杨 超(1989—),男,硕士,讲师,主要从事研究方向为综合能源系统等方面的研究;E?mail:sanxiayc22@163.com

中图分类号:

TM712

基金项目:

湖北省自然科学基金(2022CFB825);国家自然科学基金项目(62233006,52007103);梯级水电站运行与控制湖北省重点实验室(三峡大学)开放基金(2023KJX06);电力系统智能运行与安全防御宜昌市重点实验室(三峡大学)开放基金(2020DLXY06)


Transient stability assessment of power system in combination with update mechanism
Author:
Affiliation:

(1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; 2.Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Yichang 443002, China; 3.Wuhan Power Supply Company, State Grid Hubei Electric Power Co., Ltd., Wuhan 430013, China; 4.Taiyuan Power Supply Company, State Grid Shanxi Electric Power Co., Ltd., Taiyuan 030000, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    电力系统是一个时变的复杂系统。近年来,基于数据驱动的机器学习方法在电力系统暂态稳定评估领域得到了广泛应用。然而,当电力系统运行受到较大扰动发生工况变化时,机器学习模型需要根据新的运行数据进行训练,故其难以及时应对新拓扑结构下系统的暂态稳定情况评估。为解决该问题,首先,提出了一种模型更新机制,按照不同条件对模型进行更新;其次,引入了基于多面近端支持向量机(multisurface proximal support vector machine,MPSVM)的斜双随机森林(oblique double random forest with MPSVM,MPDRF)模型,并将其作为分类器对电力系统的稳定状态进行评估;最后,在新英格兰10机39节点系统上的进行仿真测试,验证该方法的有效性。研究结果表明,所提的结合更新机制的电力系统暂态稳定评估方法的评估性能优于普通方法的。

    Abstract:

    Power system is a time-varying complex system. In recent years, data-driven machine learning method has been widely used in the field of transient stability assessment of power system. However, when the power system is subjected to a large disturbance and the working condition changes, the machine learning model needs to be trained according to the new operating data. Thus, it is difficult to timely respond to transient stability assessment of the system under the new topology structure. To solve this problem, a model update mechanism is proposed in this paper, which updates the model according to different conditions. In addition, an oblique double random forest with multisurface proximal support vector machine (MPSVM) (MPDRF) model is introduced as a classifier to assess the stable state of power system. The simulation test on the New England 10-machine 39-bus system verifies the effectiveness of the proposed method. The results show that the method combined with update mechanism has high assessment performance, compared with the traditional method.

    参考文献
    [1] 鞠平,姜婷玉,黄桦.浅论新型电力系统的“三自” 性质[J].中电机工程学报,2023,43(7):2598-2608. JU Ping,JIANG Tingyu,HUANG Hua.Brief discussion on the “three-self” nature of the new power system[J].Proceedings of the CSEE,2023,43(7):2598-2608.
    [2] 张亮,安军,周毅博.基于时间卷积和图注意力网络的电力系统暂态稳定评估[J].电力系统自动化,2023,47(7):114-122. ZHANG Liang,AN Jun,ZHOU Yibo.Transient stability assessment of power system based on temporal convolution and graph attention network[J].Automation of Electric Power Systems,2023,47(7):114-122.
    [3] 韩圣泽.暂态电压稳定评估方法综述[J].电工技术,2023(4):166-170. HAN Shengze.Survey of transient voltage stability evaluation methods[J].Electric Engineering,2023(4):166-170.
    [4] 武宇翔,韩肖清,牛哲文,等.基于变权重随机森林的暂态稳定评估方法及其可解释性分析[J].电力系统自动化,2023,47(14):93-104. WU Yuxiang,HAN Xiaoqing,NIU Zhewen,et al.Transient stability assessment method based on variable weight random forest and its interpretability analysis[J].Automation of Electric Power Systems,2023,47(14):93-104.
    [5] 王晓晖,黄阮明,李灏恩,等.基于瞬态能量函数法的电力系统暂态稳定性分析[J].电工技术,2023(7):72-74. WANG Xiaohui,HUANG Ruanming,LI Haoen,et al.Transient stability analysis of power system based on transient energy function method[J].Electric Engineering,2023(7):72-74.
    [6] 刘颂凯,袁铭洋,杨超,等.基于XGBoost和ASPSO的电力系统暂态稳定预防控制方法[J].电网与清洁能源,2023,39(10):9-18. LIU Songkai,YUAN Mingyang,YANG Chao,et al.A transient stability preventive control method of power systems based on XGBoost and ASPSO[J].Power System and Clean Energy,2023,39(10):9-18.
    [7] 李永康,刘宝柱,胡俊杰.基于数据驱动与时域仿真融合的电力系统暂态稳定快速评估[J].电网技术,2023,47(11):4386-4396. LI Yongkang,LIU Baozhu,HU Junjie.Rapid assessment of transient stability of power system based on data-driven and time-domain simulation[J].Power Grid Technology,2023,47(11):4386-4396.
    [8] 高发骏,王怀远,党然.基于Transformer的暂态稳定评估模型的可解释性分析与模型更新研究[J].电力系统保护与控制,2023,51(17):15-25. GAO Fajun,WANG Huaiyuan,DANG Ran.Interpretability analysis and model update research of a transient stability assessment model based on Transformer[J].Power System Protection and Control,2023,51(17):15-25.
    [9] 童晓阳,叶圣永.数据挖掘在电力系统暂态稳定评估中的应用综述[J].电网技术,2009,33(20):88-93. TONG Xiaoyang,YE Shengyong.A survey on application of data mining in transient stability assessment of power system[J].Power System Technology,2009,33(20):88-93.
    [10] 汤奕,崔晗,李峰,等.人工智能在电力系统暂态问题中的应用综述[J].中国电机工程学报,2019,39(1):2-13+315. TANG Yi,CUI Han,LI Feng,et al.Review on artificial intelligence in power system transient stability analysis[J].Proceedings of the CSEE,2019,39(1):2-13+315.
    [11] 张钢,邓贤哲,马晓伟,等.基于广域测量信息的物理-数据融合频率偏差极值在线预测[J].电力建设,2023,44(8):1-12. ZHANG Gang,DENG Xianzhe,MA Xiaowei,et al.Online prediction of extreme deviation of physical-data fusion frequency based on wide-area measurements[J].Electric Power Construction,2023,44(8):1-12.
    [12] 陈康,王泽,郭永吉.基于grcForest模型的风电并网系统暂态电压稳定评估[J].智慧电力,2023,51(1):31-37. CHEN Kang,WANG Ze,GUO Yongji.Transient voltage stability assessment of wind power grid-connected system based on grcForest model[J].Smart Power,2023,51(1):31-37.
    [13] 季佳伸,吴俊勇,王彦博,等.基于深度残差网络的电力系统暂态电压稳定评估[J].电网技术,2022,46(7):2500-2511. JI Jiashen,WU Junyong,WANG Yanbo,et al.Power system transient voltage stability assessment based on deep residual network[J].Power System Technology,2022,46(7):2500-2511.
    [14] 刘科研,詹惠瑜,谭云耀,等.基于改进极限学习机的配电网高阻接地故障检测方案[J].电网技术,2023,47(5):1886-1899. LIU Keyan,ZHAN Huiyu,TAN Yunyao,et al.High impedance grounding fault detection in distribution network based on improved extreme learning machine[J].Power System Technology,2023,47(5):1886-1899.
    [15] 胡一鸣,史鸿飞,张玉龙,等.基于行波全景故障特征自辨识的高阻接地故障检测方法[J].供用电,2023,40(4):39-46+54. HU Yiming,SHI Hongfei,ZHANG Yulong,et al.High impedance fault detection method based on traveling wave full waveform fault characteristics self-identification[J].Distribution & Utilization,2023,40(4):39-46+54.
    [16] 刘建锋,姚晨曦,陈乐乐.基于门控时空图神经网络的电力系统暂态稳定评估[J].电力科学与技术学报,2023,38(2):214-223. LIU Jianfeng,YAO Chenxi,CHEN Lele.Power system transient stability assessment based on gating spatial temporal graph neural network[J].Journal of Electric Power Science and Technology,2023,38(2):214-223.
    [17] ZHOU X M,GUAN X,SUN D,et al.Transient stability assessment based on gated graph neural network with imbalanced data in Internet of energy[J].IEEE Internet of Things Journal,2022,9(12):9320-9331.
    [18] WU S,ZHENG L,HU W,et al.Improved deep belief network and model interpretation method for power system transient stability assessment[J].Journal of Modern Power Systems and Clean Energy,2020,8(1):27-37.
    [19] 刘书池,刘颂凯,张磊,等.考虑样本不平衡的电力系统鲁棒暂态稳定评估[J].智慧电力,2022,50(7):16-22+73. LIU Shuchi,LIU Songkai,ZHANG Lei,et al.Robust transient stability assessment of power system considering sample imbalance[J].Smart Power,2022,50(7):16-22+73.
    [20] 李楠,张家恒.基于XGboost-DF的电力系统暂态稳定评估方法[J].电测与仪表,2024,61(10):119-127. LI Nan,ZHANG Jiaheng.A transient stability assessment method of power system based on XGboost-DF[J].Electrical Measurement & Instrumentation,2024,61(10):119-127.
    [21] LIU S K,LIU L H,FAN Y P,et al.An integrated scheme for online dynamic security assessment based on partial mutual information and iterated random forest[J].IEEE Transactions on Smart Grid,2020,11(4):3606-3619.
    [22] MANGASARIAN O L,WILD E W.Multisurface proximal support vector machine classification via generalized eigenvalues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):69-74.
    [23] GANAIE M A,TANVEER M,SUGANTHAN P N,et al.Oblique and rotation double random forest[J].Neural Networks,2022,153:496-517.
    [24] HAN S,KIM H,LEE Y S.Double random forest[J].Machine Learning,2020,109(8):1569-1586.
    [25] BUCCINI A,DONATELLI M,REICHEL L.Iterated Tikhonov regularization with a general penalty term[J].Numerical Linear Algebra with Applications,2017,24(4):e2089.
    [26] 周生存,罗毅,易煊承,等.基于边界强化混合采样的两阶段电力系统暂态稳定评估[J].电力自动化设备,2024,44(4):143-150. ZHOU Shengcun,LUO Yi,YI Xuancheng,et al.Two-stage transient stability assessment of power system based on boundary enhanced hybrid sampling[J].Electric Power Automation Equipment,2024,44(4):143-150.
    [27] 马成廉,张敉,刘洪波,等.基于振荡中心迁移的风机并网后电力系统暂态稳定耦合分析[J].电网与清洁能源,2024,40(12):102-110. MA Chenglian,ZHANG Mi,LIU Hongbo,et al.A coupling analysis of transient stability of power system with grid-connected wind power based on oscillation center transfer[J].Power System and Clean Energy,2024,40(12):102-110.
    [28] 韩天森,陈金富,李银红,等.电力系统稳定评估机器学习可解释代理模型研究[J].中国电机工程学报,2020,40(13):4122-4131. HAN Tiansen,CHEN Jinfu,LI Yinhong,et al.Study on interpretable surrogate model for power system stability evaluation machine learning[J].Proceedings of the CSEE,2020,40(13):4122-4131.
    [29] AL-MASRI A N,AB KADIR M Z A,HIZAM H,et al.A novel implementation for generator rotor angle stability prediction using an adaptive artificial neural network application for dynamic security assessment[J].IEEE Transactions on Power Systems,2013,28(3):2516-2525.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘颂凯,龚 潇,杨 超,等.结合更新机制的电力系统暂态稳定评估研究[J].电力科学与技术学报,2025,40(2):1-9.
LIU Songkai, GONG Xiao, YANG Chao, et al. Transient stability assessment of power system in combination with update mechanism[J]. Journal of Electric Power Science and Technology,2025,40(2):1-9.

复制
分享
文章指标
  • 点击次数:284
  • 下载次数: 203
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-06-06
文章二维码