基于隐树模型和聚类搜索的低压配电网拓扑辨识
作者:
作者单位:

(国网江苏省电力有限公司苏州供电分公司,江苏 苏州 215000)

作者简介:

作者简介:张恒超(1989—),男,硕士,工程师,主要从事电能计量、用电信息采集方面的研究;E?mail:zhc8920@126.com

中图分类号:

TM76

基金项目:

国网江苏省电力有限公司2022年度技术服务项目(SGJSSZ00YZ.JS2201414)。


Topology identification of low-voltage distribution network based on latent tree model and cluster search
Author:
Affiliation:

(Suzhou Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd., Suzhou 215000, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    拓扑结构信息是潮流计算、状态估计和故障诊断等配电网高级分析功能的基础。由于低压配电网中部分节点无法上传自身的运行状态,因此这些隐式节点的存在给拓扑辨识带来了巨大挑战。提出一种基于隐树模型和聚类搜索的低压配电网拓扑辨识方法。首先,提出一种嵌入隐式节点的贝叶斯网络,定义为隐树模型,为所有可能的低压配电网拓扑结构提供概率表示。其次,提出一种基于聚类搜索的算法来生成候选拓扑结构,并通过贝叶斯信息准则评估候选拓扑结构的准确性。最后,利用仿真和实验证明所提方法的有效性和鲁棒性。

    Abstract:

    Topology information is the foundation of advanced analysis functions in distribution network, such as power flow calculation, state estimation, and fault diagnosis. Due to the inability of some nodes in the low-voltage distribution network to upload their own operational status, the existence of these implicit nodes poses a huge challenge to topology identification. This paper proposes a topology identification method for low-voltage distribution networks based on latent tree model and cluster search. Firstly, a Bayesian network with embedded implicit nodes is proposed, which is defined as a latent tree model to provide probabilistic representation for all possible low-voltage distribution network topologies. Then a cluster search algorithm is proposed to generate candidate topologies, and the accuracy of the candidate topologies is evaluated using Bayesian information criteria. Finally, simulation and experiments are conducted to demonstrate the effectiveness and robustness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

张恒超,曹 骏,沈秋英.基于隐树模型和聚类搜索的低压配电网拓扑辨识[J].电力科学与技术学报,2025,40(2):170-178,195.
ZHANG Hengchao, CAO Jun, SHEN Qiuying. Topology identification of low-voltage distribution network based on latent tree model and cluster search[J]. Journal of Electric Power Science and Technology,2025,40(2):170-178,195.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-06-06
文章二维码