基于RFID传感器和深度学习的开关柜故障诊断研究
作者:
作者单位:

(国网江苏省电力有限公司电力科学研究院,江苏 南京 211103)

通讯作者:

王真(1992—),男,硕士,高级工程师,主要从事电力物联网与人工智能等方面的研究;E?mail:1076603488@qq.com

中图分类号:

TM591

基金项目:

国家电网有限公司科技项目(J2023091)


Fault detection in switchgear based on RFID sensors and deep learning
Author:
Affiliation:

(Electric Power Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    为提高开关柜故障诊断的准确性,提出一种基于RFID传感器和深度学习的开关柜故障诊断算法。首先,设计用于采集开关柜电流信号和温度射频识别(radio frequency identification, RFID)的传感标签;其次,采集的信号通过深度信念网络(deep belief networks, DBN)进行深层次特征提取,并将稀疏编码(sparse code, SC)融合到DBN网络中,提高其检测精度;最后,为提高检测速度,采用极限学习机(extreme learning machine, ELM)对特征提取的信号进行分类识别。研究结果表明,相比于其他算法,本文提出的SDBN?ELM故障诊断模型检测精度更高,识别速度更快,其准确率可达99.63%。

    Abstract:

    In order to improve the accuracy of switchgear fault detection, this paper proposes a fault detection algorithm for switchgear based on RFID sensors and deep learning. Firstly, RFID sensing tags are designed to collect the current signals and temperature of the switchgear. Secondly, the collected signals are subjected to deep-level feature extraction through a deep belief network (DBN), and sparse coding (SC) is integrated into the DBN to improve its detection accuracy. Finally, in order to improve the detection speed, an extreme learning machine (ELM) is used to classify and recognize the signals extracted from the features. The experimental results show that compared to other algorithms, the sparse DBN-ELM (SDBN–ELM) fault detection model proposed in the paper offers higher detection accuracy, faster recognition speed, and an accuracy rate of 99.63%.

    参考文献
    [1] 谢小荣,贺静波,毛航银,等.“双高” 电力系统稳定性的新问题及分类探讨[J].中国电机工程学报,2021,41(2):461-475. XIE Xiaorong,HE Jingbo,MAO Hangyin,et al.New issues and classification of power system stability with high shares of renewables and power electronics[J].Proceedings of the CSEE,2021,41(2):461-475.
    [2] 盛戈皞,钱勇,罗林根,等.面向新型电力系统的电力设备运行维护关键技术及其应用展望[J].高电压技术,2021,47(9):3072-3084. SHENG Gehao,QIAN Yong,LUO Lingen,et al.Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J].High Voltage Engineering,2021,47(9):3072-3084.
    [3] 赵倩宇,王璐洋,王守相.新型配电系统灵活性及其评价指标综述[J].供用电,2024,41(8):35-44. ZHAO Qianyu,WANG Luyang,WANG Shouxiang.Review on flexibility of new distribution systems and its evaluation indexes[J].Distribution & Utilization,2024,41(8):35-44.
    [4] 王雪,刘林,刘文迪,等.基于纵横交叉算法的新型电力系统惯量延迟优化控制策略[J].中国电力,2024,57(7):12-20. WANG Xue,LIU Lin,LIU Wendi,et al.A novel inertia delay optimization control strategy for new power systems based on crisscross optimization[J].Electric Power,2024,57(7):12-20.
    [5] 董盼,杨鑫,贾鹏飞,等.10kV高压开关柜安全性能的提升方法[J].电工技术学报,2022,37(11):2733-2742. DONG Pan,YANG Xin,JIA Pengfei,et al.Improve method the safety performance of 10kV high voltage switchgear[J].Transactions of China Electrotechnical Society,2022,37(11):2733-2742.
    [6] 雍明超,王磊,魏勇,等.配网开关设备智能物联感知与关键技术研究[J].高压电器,2022,58(7):73-82. YONG Mingchao,WANG Lei,WEI Yong,et al.Research on intelligent IoT sensing and key technology of distribution network switchgear[J].High Voltage Apparatus,2022,58(7):73-82.
    [7] 彭炜文,郑振峰,黄竑铭,等.35 kV开关柜沿面放电图谱分析及特性研究[J].高压电器,2024,60(12):250-255. PENG Weiwen,ZHENG Zhenfeng,HUANG Hongming,et al.Analysis and characteristic research on surface discharge pattern of 35 kV switchgear cabinet[J].High Voltage Apparatus,2024,60(12):250-255.
    [8] 于淼,闫旻睿,万克厅,等.数据驱动的有源配电网运行态势智能感知方法[J].电力建设,2024,45(7):34-53. YU Miao,YAN Minrui,WAN Keting,et al.Data-driven intelligent situational awareness of active distribution networks[J].Electric Power Construction,2024,45(7):34-53.
    [9] 王楚豫,谢磊,赵彦超,等.基于RFID的无源感知机制研究综述[J].软件学报,2022,33(1):297-323. WANG Chuyu,XIE Lei,ZHAO Yanchao,et al.Survey on RFID-based battery-less sensing[J].Journal of Software,2022,33(1):297-323.
    [10] 刘威,邓巍.基于RBF神经网络的主动配电网通信过程安全态势感知方法[J].电网与清洁能源,2024,40(5):52-58. LIU Wei,DENG Wei.A security situation awareness method of active distribution network communication process based on RBF neural network[J].Power System and Clean Energy,2024,40(5):52-58.
    [11] 王海宝,王峥,周娴姊,等.基于脉冲转换温度传感方法的电力设备温度监测系统研究[J].电力系统保护与控制,2020,48(24):180-187. WANG Haibao,WANG Zheng,ZHOU Xianzi,et al.Temperature monitoring system for distribution network equipment using a pulse conversion temperature sensing method[J].Power System Protection and Control,2020,48(24):180-187.
    [12] 陈昱,丁鸿,崔勇,等.变电设备温度态势感知及辅助决策系统方案研究[J].发电技术,2024,45(4):744-752. CHEN Yu,DING Hong,CUI Yong,et al.Research on temperature situation awareness and auxiliary decision-making system scheme of substation equipment[J].Power Generation Technology,2024,45(4):744-752.
    [13] 张朝龙,何怡刚,杜博伦,等.基于深度学习的电力变压器智能故障诊断方法[J].电子测量与仪器学报,2020,34(1):81-89. ZHANG Chaolong,HE Yigang,DU Bolun,et al.Intelligent fault diagnosis method of power transformer using deep learning[J].Journal of Electronic Measurement and Instrumentation,2020,34(1):81-89.
    [14] 王娜娜,栗文义,李小龙.基于不均衡小样本DGA数据与改进CatBoost决策树的油浸式变压器故障诊断方法[J].电力系统保护与控制,2024,52(23):167-176. WANG Nana,LI Wenyi,LI Xiaolong.An oil-immersed transformer fault diagnosis method based on DGA unbalanced limited sample processing and improved CatBoost[J].Power System Protection and Control,2024,52(23):167-176.
    [15] 邓志飞,鲍光海.基于超高频RFID技术的电缆接头温度在线监测系统[J].仪表技术与传感器,2021(7):71-75+96. DENG Zhifei,BAO Guanghai.Online monitoring system of cable joint temperature based on UHF RFID technology[J].Instrument Technique and Sensor,2021(7):71-75+96.
    [16] 王伟平,周恒,梁国坚,等.110 kV单芯电缆缆芯暂态温度径向感知模型研究[J].智慧电力,2023,51(10):103-110. WANG Weiping,ZHOU Heng,LIANG Guojian,et al.Transient temperature radial sensing model for cable cores of 110 kV single core cables[J].Smart Power,2023,51(10):103-110.
    [17] 陆云才,范路,陶风波,等.人工智能在局部放电检测中的应用(一):去噪与故障定位[J].绝缘材料,2021,54(5):10-20. LU Yuncai,FAN Lu,TAO Fengbo,et al.Application of artificial intelligence in partial discharge detection part Ⅰ:denoising and fault location[J].Insulating Materials,2021,54(5):10-20.
    [18] 李俊卿,陈雅婷,李斯璇.机器算法在电气设备故障预警及诊断中的应用[J].科学技术与工程,2020,20(9):3370-3377. LI Junqing,CHEN Yating,LI Sixuan.Application of machine algorithm in early warning and diagnosis of electrical equipment fault[J].Science Technology and Engineering,2020,20(9):3370-3377.
    [19] 王雷,楚明月,王晓华,等.基于随机森林的智能变电站一次侧设备运行状态监测方法研究[J].电测与仪表,2024,61(7):184-190. WANG Lei,CHU Mingyue,WANG Xiaohua,et al.Research on monitoring method of primary equipment operation state in intelligent substation based on random forest[J].Electrical Measurement & Instrumentation,2024,61(7):184-190.
    [20] 戴昕宇,徐焕宇,张宁.移动端卷积神经网络开关柜局部放电样本生成与检测[J].电子测量技术,2022,45(12):141-147. DAI Xinyu,XU Huanyu,ZHANG Ning.Partial discharge sample generation and detection of convolutional neural network switchgear at mobile end[J].Electronic Measurement Technology,2022,45(12):141-147.
    [21] 王婷婷,丁浩,张周胜.基于深度学习和多模型融合的局部放电模式识别方法[J].电力工程技术,2023,42(3):188-195. WANG Tingting,DING Hao,ZHANG Zhousheng.A partial discharge pattern recognition method based on deep learning and multi-model fusion[J].Electric Power Engineering Technology,2023,42(3):188-195.
    [22] 张鑫,牟龙华,徐志宇.基于电力物联网的高压开关柜状态监测系统设计[J].实验室研究与探索,2021,40(6):74-80. ZHANG Xin,MU Longhua,XU Zhiyu.Design of condition monitoring system for high voltage switchgear based on power Internet of Things[J].Research and Exploration in Laboratory,2021,40(6):74-80.
    [23] 苏磊,陈璐,徐鹏,等.基于深度信念网络的变压器运行状态分析[J].高压电器,2021,57(2):56-62. SU Lei,CHEN Lu,XU Peng,et al.Operation condition analysis of transformer based on deep belief network[J].High Voltage Apparatus,2021,57(2):56-62.
    [24] SEHAT H,PAHLEVANI P.An analytical model for rank distribution in sparse network coding[J].IEEE Communications Letters,2019,23(4):556-559.
    [25] HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王 真,刘子全,路永玲,等.基于RFID传感器和深度学习的开关柜故障诊断研究[J].电力科学与技术学报,2025,40(2):179-185.
WANG Zhen, LIU Ziquan, LU Yongling, et al. Fault detection in switchgear based on RFID sensors and deep learning[J]. Journal of Electric Power Science and Technology,2025,40(2):179-185.

复制
分享
文章指标
  • 点击次数:44
  • 下载次数: 83
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-06-06
文章二维码