考虑超大功率的光储充换电站选址定容方法
作者:
作者单位:

(1.国网天津市电力公司电力科学研究院,天津 300384;2.国网天津市电力公司,天津 300010;3.国网电动汽车服务(天津)有限公司,天津 300143;4.三峡大学电气与新能源学院,湖北 宜昌 443002;5.国网天津市电力公司城东供电公司,天津 300250)

通讯作者:

张智达(1994—),男,硕士研究生,主要从事车网互动、充电设施建设运营业务等方面的研究;E?mail:1540481951@qq.com

中图分类号:

TM73

基金项目:

国网天津市电力公司科学技术研发项目(电科?研发2023?53)


Photovoltaic and energy storage charging and switching station siting and capacity determination method considering ultra‑high power
Author:
Affiliation:

(1.Electric Power Research Institute, State Grid Tianjin Electric Power Co.,Ltd., Tianjin 300384, China; 2. State Grid Tianjin Electric PowerCo.,Ltd., Tianjin 300010, China; 3. State Grid Electric Vehicle Service (Tianjin) Co., Ltd., Tianjin 300143, China; 4. College of ElectricalEngineering and New Energy, China Three Gorges University, Yichang 443002, China; 5. Chengdong Power Supply Branch,State Grid Tianjin Electric Power Co.,Ltd., Tianjin 300250, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    现有研究在超大功率充换电站的规划中对用户行为差异性和随机性刻画不全面,且缺乏对站内光伏、储能等分布式灵活资源协同规划的考虑。为此,提出一种计及多耦合因素的光储充换一体化电站双层选址定容方法。首先,构建了考虑用户出行特性、温度与实时路况等因素的电动汽车充换电负荷预测模型;其次,为兼顾用户充、换电需求与配电网安全经济发展,将光伏、储能设施作为能量缓冲装置,对其进行精细化出力建模;再次,构建光储充?换电站双层规划模型,其上层模型以充换电站年化收益最优为目标,进行选址,下层模型以用户到站的距离最短为目标,确定各充?换电站的服务范围,并将结果反馈给上层,结合预测结果进行定容优化;最后,以路网与IEEE 33节点配电网耦合拓扑结构为例,验证了所提模型和方法的有效性。研究表明,该方法可以使超大功率充电设施合理接入充换电站,为城市充电基础设施的规划提供理论指导与技术方法支撑。

    Abstract:

    Existing studies in the planning of ultra-high power charging and switching stations lack a comprehensive depiction of user behavioral variability and stochasticity and the consideration of collaborative planning of distributed flexible resources such as photovoltaic and energy storage in the station. To this end, a two-tier siting and capacity determination method for integrated photovoltaic and energy storage charging and switching power stations involving multiple coupling factors is proposed. First, an electric vehicle charging and switching load prediction model considering user travel characteristics, temperature, and real-time road conditions is constructed. Second, to take into account user charging and switching needs and secure and economic development of distribution networks, photovoltaic and energy storage facilities are used for energy buffer, and their output is modeled in a refined manner. Additionally, a two-tier planning model for photovoltaic and energy storage charging and switching stations is constructed, with the upper model taking the optimal annualized return of charging and switching stations as the target for siting and the lower model taking the shortest distance from users to stations as the target for determining the service range of charging and switching stations. The results are fed back to the upper model, and the capacity determination is optimized in combination with prediction results. Finally, the validity of the proposed model and method is verified by taking the topology of the road network and IEEE 33 node distribution network coupling for example. The study shows that the method can make the ultra-high power charging facilities reasonably integrate with the charging and switching stations and provide theoretical and technical support for the planning of urban charging infrastructure.

    参考文献
    [1] 林墩,蓝海龙,谭易,等.电动汽车大功率充电发展趋势研究[J].中国汽车,2023,33(9):19-24. LIN Dun,LAN Hailong,TAN Yi,et al.Research on the development trend of high power charging for electric vehicles[J].China Auto,2023,33(9):19-24.
    [2] 张美霞,叶睿琦,杨秀,等.基于多维状态空间MCMC充电负荷预测的充电站规划[J].电力科学与技术学报,2022,37(4):78-87. ZHANG Meixia,YE Ruiqi,YANG Xiu,et al.Charging station planning for electric vehicle based on charging load forecast by MCMC method in multi-dimensional state space[J].Journal of Electric Power Science and Technology,2022,37(4):78-87.
    [3] 程杉,傅桐,赵子凯,等.考虑电动汽车随机转移特性的充储电站群两阶段优化调度[J].高电压技术,2023,49(10):4257-4266. CHENG Shan,FU Tong,ZHAO Zikai,et al.Two-stage optimal scheduling of charging and storage station clusters considering the random transfer characteristics of electric vehicles[J].High Voltage Engineering,2023,49(10):4257-4266.
    [4] 丁乐言,柯松,张帆,等.考虑出行需求和引导策略的电动汽车充电负荷预测[J].电力建设,2024,45(6):10-26. DING Leyan,KE Song,ZHANG Fan,et al.Forecasting of electric-vehicle charging load considering travel demand and guidance strategy[J].Electric Power Construction,2024,45(6):10-26.
    [5] 姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制,2023,51(16):158-167. YAO Fang,TANG Junhao,CHEN Shenghua,et al.Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model[J].Power System Protection and Control,2023,51(16):158-167.
    [6] 董晓红,孔华志,丁飞,等.考虑电池老化的电动汽车中长期充电负荷预测方法[J].电力系统自动化,2024,48(13):109-119. DONG Xiaohong,KONG Huazhi,DING Fei,et al.Medium-and long-term charging load forecasting method for electric vehicles considering battery aging[J].Automation of Electric Power Systems,2024,48(13):109-119.
    [7] HOSSEINI S,SARDER M.Development of a Bayesian network model for optimal site selection of electric vehicle charging station[J].International Journal of Electrical Power & Energy Systems,2019,105:110-122.
    [8] 尚龙龙,程俊杰,王伟,等.计及交通拥堵的电动汽车充电站规划方法[J].电力科学与技术学报,2023,38(1):66-76. SHANG Longlong,CHENG Junjie,WANG Wei,et al.An electric vehicle charging station planning method considering traffic congestion[J].Journal of Electric Power Science and Technology,2023,38(1):66-76.
    [9] 张文会,苏嘉祺,哈字洪,等.电池交换式纯电动公交充电站选址定容模型[J].华南理工大学学报(自然科学版),2023,51(10):126-134. ZHANG Wenhui,SU Jiaqi,HA Zihong,et al.Location and capacity optimization model of battery-swapped electric bus charging station[J].Journal of South China University of Technology (Natural Science Edition),2023,51(10):126-134.
    [10] 刘东林,王育飞,张宇,等.基于Huff模型的电动汽车充电站选址定容方法[J].电力自动化设备,2023,43(11):103-110. LIU Donglin,WANG Yufei,ZHANG Yu,et al.Siting and sizing method of electric vehicle charging stations based on Huff model[J].Electric Power Automation Equipment,2023,43(11):103-110.
    [11] 刘祺,王承民,谢宁,等.新型配电系统中考虑电动汽车差异化行为特性的充换电站规划方法[J].智慧电力,2024,52(9):18-24+64. LIU Qi,WANG Chengmin,XIE Ning,et al.Charging and swapping stations planning method considering differentiated behavior characteristics of electric vehicles in new distribution system[J].Smart Power,2024,52(9):18-24+64.
    [12] 肖白,高峰.含不同容量充电桩的电动汽车充电站选址定容优化方法[J].电力自动化设备,2022,42(10):157-166. XIAO Bai,GAO Feng.Optimization method of electric vehicle charging stations' site selection and capacity determination considering charging piles with different capacities[J].Electric Power Automation Equipment,2022,42(10):157-166.
    [13] 张智禹,王致杰,杨皖昊,等.基于充电需求预测的电动汽车充电站选址规划研究[J].电测与仪表,2024,61(10):39-49. ZHANG Zhiyu,WANG Zhijie,YANG Wanhao,et al.Research on location planning of electric vehicle charging station based on prediction of charging demand[J].Electrical Measurement & Instrumentation,2024,61(10):39-49.
    [14] 程杉,杨堃,汪业乔,等.含风力发电的电动汽车充电站区间优化调度[J].电机与控制学报,2021,25(6):101-109. CHENG Shan,YANG Kun,WANG Yeqiao,et al.Interval optimization scheduling of electric vehicle charging station including wind power generation[J].Electric Machines and Control,2021,25(6):101-109.
    [15] 程濛,刘舒然,骆琪霖.基于高斯混合模型的配电网大规模光伏与电动汽车充电桩协同规划[J].供用电,2023,40(1):18-24. CHENG Meng,LIU Shuran,LUO Qilin.Collaborative planning of large-scale photovoltaic and electric vehicle charging stake in distribution network based on Gaussian mixture model[J].Distribution & Utilization,2023,40(1):18-24.
    [16] 谢远德,张邻,邓沙丽,等.电动汽车充电设施优化网络布局研究[J].数学的实践与认识,2020,50(10):168-176. XIE Yuande,ZHANG Lin,DENG Shali,et al.Research on optimized network layout of electric vehicle charging facilities[J].Mathematics in Practice and Theory,2020,50(10):168-176.
    [17] 王阳,刘希喆.基于GRU-MPC的光储充电站日前-日内两阶段优化控制[J].电力自动化设备,2022,42(10):177-183. WANG Yang,LIU Xizhe.Day-ahead and intra-day two-stage optimal control of photovoltaic-energy storage charging station based on GRU-MPC[J].Electric Power Automation Equipment,2022,42(10):177-183.
    [18] 马丽叶,王海锋,卢志刚.计及故障率影响含电动汽车的分布式电源选址定容双层协调规划[J].电网技术,2021,45(12):4749-4760. MA Liye,WANG Haifeng,LU Zhigang.Double-layer coordinated planning for location and capacity of distributed power supply with electric vehicles considering failure rate[J].Power System Technology,2021,45(12):4749-4760.
    [19] 杨楠,梁金正,丁力,等.考虑改造扩建和安全效能成本的光储一体化充电站规划方法[J].电网技术,2023,47(9):3557-3569. YANG Nan,LIANG Jinzheng,DING Li,et al.Integrated optical storage charging considering reconstruction expansion and safety efficiency cost[J].Power System Technology,2023,47(9):3557-3569.
    [20] 张博,马梓耀,王辰,等.含光储充一体化电站的城市交直流混合配电网韧性提升策略[J].电力系统自动化,2023,47(12):28-37. ZHANG Bo,MA Ziyao,WANG Chen,et al.Resilience improvement strategy for urban AC/DC hybrid distribution network with photovoltaic-storage-charging integrated station[J].Automation of Electric Power Systems,2023,47(12):28-37.
    [21] 杨莎,熊国江.基于RL-GSK算法的光储联合电站运行策略研究[J].电网与清洁能源,2024,40(7):28-37. YANG Sha,XIONG Guojiang.A study on the operation strategy of the photovoltaic storage joint power plant based on the RL-GSK algorithm[J].Power System and Clean Energy,2024,40(7):28-37.
    [22] 时珊珊,魏新迟,张宇,等.考虑多模式融合的光储充电站储能系统优化运行策略[J].中国电力,2023,56(3):144-153+161. SHI Shanshan,WEI Xinchi,ZHANG Yu,et al.Optimal operation strategy of energy storage system in photovoltaic-storage charging station considering multi-mode integration[J].Electric Power,2023,56(3):144-153+161.
    [23] 严干贵,刘华南,韩凝晖,等.计及电动汽车时空分布状态的充电站选址定容优化方法[J].中国电机工程学报,2021,41(18):6271-6284. YAN Gangui,LIU Huanan,HAN Ninghui,et al.An optimization method for location and capacity determination of charging stations considering spatial and temporal distribution of electric vehicles[J].Proceedings of the CSEE,2021,41(18):6271-6284.
    [24] 方雨辰,章姝俊,陆海清,等.考虑调峰辅助服务的移动储能车路径优化与充放电策略[J].电力科学与技术学报,2023,38(3):47-53. FANG Yuchen,ZHANG Shujun,LU Haiqing,et al.Research on route optimization and charging/discharging strategy of mobile energy storage vehicle considering peak shaving auxiliary service[J].Journal of Electric Power Science and Technology,2023,38(3):47-53.
    [25] 程杉,钟仕凌,尚冬冬,等.考虑电动汽车时空负荷分布特性的主动配电网动态重构[J].电力系统保护与控制,2022,50(17):1-13. CHENG Shan,ZHONG Shiling,SHANG Dongdong,et al.Dynamic reconfiguration of an active distribution network considering temporal and spatial load distribution characteristics of electric vehicles[J].Power System Protection and Control,2022,50(17):1-13.
    [26] 沈筱琦,方鑫,谭林林,等.基于居民出行模拟的电动汽车负荷时空分布预测[J].电力工程技术,2024,43(3):130-139. SHEN Xiaoqi,FANG Xin,TAN Linlin,et al.Prediction of spatio-temporal distribution of electric vehicle load based on residential travel simulation[J].Electric Power Engineering Technology,2024,43(3):130-139.
    [27] 程杉,魏昭彬,赵子凯,等.考虑电动汽车时空接入随机性的充储电站有序充放电分散式优化[J].电力自动化设备,2021,41(6):28-35+44+36-38. CHENG Shan,WEI Zhaobin,ZHAO Zikai,et al.Decentralized optimization of ordered charging and discharging for charging-storage station considering spatial-temporal access randomness of electric vehicles[J].Electric Power Automation Equipment,2021,41(6):28-35+44+36-38.
    [28] 程杉,倪凯旋,赵孟雨.基于Stackelberg博弈的充换储一体化电站微电网双层协调优化调度[J].电力自动化设备,2020,40(6):49-55+69+56-59. CHENG Shan,NI Kaixuan,ZHAO Mengyu.Stackelberg game based bi-level coordinated optimal scheduling of microgrid accessed with charging-swapping-storage integrated station[J].Electric Power Automation Equipment,2020,40(6):49-55+69+56-59.
    [29] JONES G L,QIN Q.Markov chain Monte Carlo in practice[J].Annual Review of Statistics and Its Application,2022,9(1):557-578.
    [30] LOGOFET D O,LESNAYA E V.The mathematics of Markov models:what Markov chains can really predict in forest successions[J].Ecological Modelling,2000,126(2/3):285-298.
    [25] WAHBAH M,MOHANDES B,EL-FOULY T H M,et al.Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling[J].Energy Conversion and Management,2022,266:115811.
    相似文献
    引证文献
引用本文

刘晓楠,张 剑,张智达,等.考虑超大功率的光储充换电站选址定容方法[J].电力科学与技术学报,2025,40(2):217-226.
LIU Xiaonan, ZHANG Jian, ZHANG Zhida, et al. Photovoltaic and energy storage charging and switching station siting and capacity determination method considering ultra‑high power[J]. Journal of Electric Power Science and Technology,2025,40(2):217-226.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-06-06
文章二维码