2021, 36(4):44-52.DOI: 10.19781/j.issn.1673-9140.2021.04.006
摘要:变电站的检修运维成本受众多复杂因素影响,且检修费用数据记录具有模糊性和波动性。为解决检修费用记录不明的问题,首先对变电站检修条目划分并采用水平和垂直方向的数据分析方法进行处理,再利用 BP神经网络预测检修运维成本。为提高 BP神经网络预测精度,采用 K-fold交叉验证对原始数据训练模型进行精准调整,应用遗传算法对 BP神经网路的初始值和阀值进行调整和改进,从而建立基于遗传算法的改进 BP神经网络检修运维成本预测方法。以某地市变电站为例进行变电检修运维成本预测,对比分析显示所提方法能有效提高模型预测精准度,从而为电网给变电站拨付检修费用提供参考价值。
2021, 36(1):87-95.DOI: 10.19781/j.issn.16739140.2021.01.010
摘要:短期负荷预测对于电力系统的经济调度和稳定运行具有重要意义。为了提升短期负荷预测的精度,提出基于K折交叉验证和Stacking融合的短期负荷预测方法。首先,基于皮尔逊相关系数对影响短期负荷的多个特征进行筛选,剔除冗余特征。其次,利用K折交叉验证法训练第一层的各个子模型,并将各个子模型的预测结果作为新特征用于训练第二层模型。接着,将子模型的结果进行Stacking融合,使用第二层的模型得到短期负荷的预测结果。最后,采用新英格兰的实际数据验证所提方法的有效性。仿真结果表明,所提的K折交叉验证法能够有效地提高模型的泛化能力,Stacking融合不仅可以提升预测的平均精度,还可以减小最大的预测误差,比单一模型预测更具优势。